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Abstract

The work reported here considers the attachment of a viscous damper to a cantilever beam that is driven
by temporally white noise with several different spatial distributions. The variables in the problem to be
optimized are the location and the value of the damper. For each of the spatial distributions, there is a
location and damper value that will minimize the mean square motion averaged over the beam length.
These minima are shown to be not a strong function of the spatial distribution of the forcing function with
the best location being at 70% of the length from the fixed end. The optimal value of the damper is shown
to be 50 times the product of the beam mass and the first radian natural frequency for the beam.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is obvious that the incorporation of damping or passive energy dissipation elements into
vibratory systems is a means of limiting unwanted vibration. In single degree-of-freedom systems,
the analysis of how much damping to add will depend on whether the vibration to be minimized is
forced or transient. In multiple degree-of-freedom systems, the picture is not so clear in that the
locations at which damping may be added are new variables in the problem in addition to the
amounts of damping to be added at each location. If excessive damping is added between a given
mass and inertial ground that mass will have small vibration but this will result in large vibration
at other masses in the system. A similar effect occurs with dissipative connection between masses
of a system. The two issues here are: (1) where to add the damping and (2) how much damping to
add?
Much work has been done to predict system response when damping has been added to a

conservative system for which the unmodified modes and natural frequencies are known [1–5] but
little has been done to find both optimal location, distribution and the value of the damping. The
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answer to the above-posed question is not easily given and depends on whether the vibration is
free or forced and, if forced, whether transient, periodic or random.
Many investigators have considered the random response of damped vibratory systems [6–12].

In a previous paper, the author has shown that a simple measure of overall random response of a
damped distributed parameter system is the spatially averaged mean square response [12]. In the
same work, it was shown that for a viscous damper attached at the cantilever tip there is a damper
value that minimizes the spatially averaged mean square response. In that work, it was also shown
that an optimal dynamic vibration absorber applied at the tip could be found, however, the
resulting average mean square response was considerably higher than that for the optimal damper
to ground.
Of recent interest in the structural engineering community is the damping of vibration in stay

cables such as that are incorporated into bridge structures. Pacheco et al. [13] have explored the
use of passive viscous damping near the cable anchorage to suppress vibration and a
dimensionless design curve is developed. Viscous dampers installed near the anchorage of cables
have been shown to be of limited effectiveness and hence the concept of semiactive damping has
been explored by Johnson et al. [14].
In this work, the author considers the question posed above for the Bernoulli–Euler cantilever

beam with a single added viscous damper as illustrated in Fig. 1. This beam is a relatively simple
system for which the mode shapes and natural frequencies are well known [15]. The beam is
assumed to be driven by a stationary, zero mean, random in time force with three quite different
spatial distributions. These distributions are uniform in space, increasing with location and
decreasing with location as illustrated in Fig. 2.

2. Theory

2.1. Transfer functions

In Ref. [10] the infinite series form transfer function between the damper force PðsÞ and the
response at some point x on the beam is given as

G1ðx; sÞ ¼
Y ðx; sÞ

PðsÞ
¼

1

rAL

XN
i¼1

fiðaÞfiðxÞ
s2 þ o2i

; ð1Þ
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Fig. 1. Cantilever beam with a variable-in-space, random-in-time forcing function with an arbitrarily located viscous

damper.
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where rA is the mass per unit length, the fiðxÞ are the orthogonal beam functions associated with
the clamped-free beam given as

fiðxÞ ¼ cosh bix � cos bix � aiðsinh bix � sin bixÞ; ð2Þ

and the square of the ith natural frequency is o2i ¼ b4i EI=rA: The values of ai and biL have been
tabulated by Young [16] for beams with various boundary conditions.
The driving force is assumed to be distributed and of the form gðxÞwðtÞ and thus it is

appropriate to expand gðxÞ in a generalized Fourier series in the cantilever eigenfunctions. This
nature of this type of forcing function does not lend itself wind or turbulent fluid flow loadings.
The transfer function between W ðsÞ and the response at some point x on the beam without the
presence of the damper is similarly

G2ðx; sÞ ¼
Y ðx; sÞ
W ðsÞ

¼
XN
i¼1

difiðxÞ
rAðs2 þ o2i Þ

; ð3Þ

where the di depend on the spatial distribution of the applied force gðxÞ according to

di ¼
1

L

Z L

0

gðxÞfiðxÞ dx: ð4Þ

It should be noted that transfer functions (1) and (3) are open-loop transfer functions. In order to
investigate the effect of the spatial distribution of the random forcing function, three different
spatial distribution functions gðxÞ will be used here and will be referred to as cases (a), (b) and (c).
These three distributions are illustrated in Fig. 2 and each has an area equal to the length of the
beam.

Case (a): When the force is uniform gðxÞ ¼1 as in Fig. 2(a) the coefficient di is given by the
integral tables of Felgar [16] to be

di ¼
2ai

biL
: ð5Þ
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Fig. 2. Three spatial forcing functions considered in the three cases of this work: (a) a uniform spatial load, (b) a

linearly increasing load and (c) a linearly decreasing load.
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Case (b): Similarly, when the force is uniformly increasing gðxÞ ¼ 2x=L as shown in Fig. 2(b)
the coefficient is given by integral (4) to be

di ¼
4

ðbiLÞ
2
: ð6Þ

Case (c): Lastly, when the force distribution is as illustrated in Fig. 2(c) gðxÞ ¼ 2½1� ðx=LÞ� the
coefficients di are

di ¼
4ai

biL
�

4

ðbiLÞ
2
: ð7Þ

The first five of these coefficients have been calculated for each of the three cases and are given in
Table 1.
Inspection of these expansion coefficients indicates that the first mode is the most highly driven

in cases (a) and (b) while in case (c) the second mode is the most highly driven.
In Ref. [10] the transfer function between the applied force W ðsÞ and the response at the point

of the damper attachment x ¼ a was given to be

Mða; sÞ ¼
Y ða; sÞ
W ðsÞ

¼
G2ða; sÞ

1þ G1ða; sÞHðsÞ
; ð8Þ

where HðsÞ ¼ bs is the displacement driving point impedance of the damper. Also in Ref. [10] the
transfer function between W ðsÞ and the response at any point x on the beam is

Mðx; sÞ ¼
Y ðx; sÞ
W ðsÞ

¼ G2ðx; sÞ � G1ðx; sÞMða; sÞHðsÞ; ð9Þ

where Mða; sÞ is defined by relation (8).

2.2. Spatially averaged mean square response

The power spectral density of the response at some point x is related to the power spectral
density of wðtÞ; SwðoÞ; by the harmonic response transfer function Mðx; joÞ according to

Syðx;oÞ ¼ jMðx; joÞj2SwðoÞ: ð10Þ
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Table 1

Expansion coefficients di for the three different spatial force distributions

Mode i Case

(a) (b) (c)

1 0.7830 1.1377 0.4283

2 0.4339 0.1815 0.6863

3 0.2544 0.0648 0.4440

4 0.1819 0.0331 0.3307

5 0.1415 0.0200 0.2629
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If the power spectral density of yðx; tÞ is known from Eq. (10) then the mean square motion at a
location x is proportional to the area under that power spectrum or

s2yðxÞ ¼
1

2p

Z
N

�N

jMðx; joÞj2SwðoÞ do: ð11Þ

In many cases of vibration control, the object is to limit vibration throughout the structure, or in
case of a distributed parameter system, over the spatial domain of the structure. For the beam that
domain is 0pxpL: It was shown in Ref. [12] that one such measure of gross response of a beam is
the spatially averaged mean square response or

s2y ¼
1

L

Z L

0

s2yðxÞ dx ¼
1

2pL

Z L

0

Z
N

�N

jMðx; joÞj2SwðoÞ do dx: ð12Þ

It is known from Ref. [12] that for a damper applied at the beam tip, a value of the damper
parameter b exists which minimizes the spatially averaged mean square motion. The questions to
be answered here are whether a damper attached at some other point will again minimize the
average mean square motion and whether there is some location which will yield a global
minimum average mean square motion and if so what will be the damper value?

2.3. Frequency scaled transfer functions

In order to present results in a general fashion it makes sense to get the transfer functions in
terms of a dimensionless frequency variable. In order to accomplish this scale the s-domain
transform variable as

s ¼ o1p: ð13Þ

With this definition the transfer functions are, respectively,

G1ðx; pÞ ¼
1

rALo21

XN
i¼1

fiðxÞfiðaÞ
p2 þ g2i

; ð14Þ

G2ðx; pÞ ¼
L4

EIðb1LÞ
4

XN
i¼1

difiðxÞ
p2 þ g2i

; ð15Þ

HðpÞ ¼ bo1p; ð16Þ

where the dimensionless natural frequency variable is gi ¼ oi=o1: If these relations are substituted
into relation (8) the result for Mða; pÞ is

Mða; pÞ ¼

L4

EIðb1LÞ
4

P
N

i¼1
difiðaÞ
p2 þ g2i

1þ Cp
P

N

i¼1
f2i ðaÞ

p2 þ g2i

; ð17Þ
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where the dimensionless damping coefficient is C ¼ b=rALo1: If this relation is further
substituted into relation (9) the result is

Mðx; pÞ ¼
L4

EIðb1LÞ
4

XN
n¼1

dn � CpfnðaÞ

P
N

i¼1
difiðaÞ
p2 þ g2i

1þ Cp
P

N

i¼1
f2i ðaÞ

p2 þ g2i

0
BBB@

1
CCCA

2
6664

3
7775
fnðxÞ

p2 þ g2n
: ð18Þ

More important to the stationary random vibration problem is the frequency response function
which is given by substituting jo for s in the transfer function. Having scaled the transfer function
variable s; it is thus appropriate to deal in scaled frequency substituting jf for p where f ¼ o=o1:
The result is

Mðx; jf Þ ¼
L4

EIðb1LÞ
4

XN
n¼1

dn � jfCfnðaÞ

P
N

i¼1
difiðaÞ
g2i � f 2

1þ jfC
P

N

i¼1
f2i ðaÞ
g2i � f 2

0
BBB@

1
CCCA

2
6664

3
7775
fnðxÞ
g2n � f 2

: ð19Þ

Define the coefficient enða; f Þ as

enða; f Þ ¼
1

ðb1LÞ
4

dn � jfCfnðaÞ

P
N

i¼1
difiðaÞ
g2i � f 2

1þ jfC
P

N

i¼1
f2i ðaÞ
g2i � f 2

0
BBB@

1
CCCA

2
6664

3
7775: ð20Þ

Then, relation (19) can be written as

Mðx; jf Þ ¼
L4

EI

XN
n¼1

enða; f ÞfnðxÞ
g2n � f 2

: ð21Þ

The mean square motion at point x is given by Eq. (11) which in terms of the scaled frequency
variable f is

s2yðxÞ ¼
o1
2p

Z
N

�N

jMðx; jf Þj2Swðf Þ df : ð22Þ

If wðtÞ is assumed to be white noise with constant power spectral density function Sw the average
mean square motion from Eq. (12) is

s2yðEIÞ2

o1L8Sw

¼
1

2pL

Z L

0

Z
N

�N

jMðx; jf Þj2 df dx: ð23Þ

Relation (21) may be substituted to yield

s2yðEIÞ2

o1L8Sw

¼
1

2pL

Z L

0

Z
N

�N

XN
n¼1

enða; f ÞfnðxÞ
g2n � f 2

XN
k¼1

e	kða; f ÞfkðxÞ
g2k � f 2

df dx; ð24Þ
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where the * denotes the complex conjugate. If the spatial integral is evaluated noting the
orthogonality of the modes the result is

s2yðEIÞ2

o1L8Sw

¼
1

2p

Z
N

�N

XN
n¼1

jenða; f Þj2

ðg2n � f 2Þ2
df ð25Þ

and since the integrand of Eq. (25) is an even function of frequency the integration can be
accomplished for only positive frequency or

s2yðEIÞ2

o1L8Sw

¼
1

p

XN
n¼1

Z
N

0

enða; f Þj j2

ðg2n � f 2Þ2
df ; ð26Þ

where the enða; f Þ are defined by relation (20). This is the function to be minimized with respect to
the parameters a; the location of the damper, and C; the dimensionless coefficient of damping for
the device.

3. Discussion of results

All the three cases have been explored here by evaluation of expression (26) employing
MATLAB. The series involved were truncated at both four and five terms with no appreciable
difference in the result because in all three cases most of the response energy is in the first three
modes. For case (a) the spatial average mean square motion as a function of the damping
parameter C for various values of damper location is illustrated in Fig. 3. Note that for each
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Fig. 3. Spatial average mean square response for a variety of damper locations as a function of damper parameter C for

case (a).
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damper location there is a minimum occurring at a different values of dimensionless damper
parameter C: For damper locations near the tip the optimal damping parameter is between three
and five. As the damper is moved toward the root of the beam, the optimal viscosity increases by
an order of magnitude. On reflection it is seen that this dramatic increase in the optimal damping
is such to make the damper a nearly rigid support which decreases the mean square motion while
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Fig. 4. Minimum spatial average mean square motion as a function of damper location for case (a).

Fig. 5. Minimum spatial average mean square motion as a function of damper location for case (b).
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still dissipating energy. A plot of the minimum spatial average mean square motion as a function
of the associated optimal damper location is given in Fig. 4. A quick examination of this data
indicates that the absolute minimum value occurs when a=L ¼0.7 for a dimensionless damper
value of C ¼60.
Similar calculations were carried out for cases (b) and (c) and data similar to that presented in

Fig. 4 are shown in Figs. 5 and 6 and it is also clear that in these cases there is an optimal location
and damping parameter. These optimal parameters are shown in Table 2.
The purpose of considering the three cases was to see how strongly the spatial distribution of

the forcing function influences the optimal values and it is seen from Table 2 that a good selection
for a=L is about 0.7 and that for the dimensionless damping coefficient is C ¼50.

4. Conclusion

In the work reported here it is shown that the response of a cantilever beam to temporally white
noise with three spatial distributions by means of an attached viscous damper can be minimized in
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Fig. 6. Minimum spatial average mean square motion as a function of damper location for case (c).

Table 2

Optimal damper locations and parameters for the three cases

Case (a) (b) (c)

ða=LÞopt 0.7 0.75 0.6

Copt 60 50 40

R.G. Jacquot / Journal of Sound and Vibration 269 (2004) 623–632 631



the sense of the spatial average mean square motion by proper selection of the damper value and
the point of attachment. For each point of attachment there is a value of the damper parameter
which will minimize the spatial average of the mean square response. Among all these values there
is a location for which there exists a global minimum. For the variety of spatial distributions of
forcing functions considered the best location is about 70% of the length from the fixed end and
the value of the damper coefficient is about b ¼ 50rALo1:
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